

Chris Olson, Simulation Engineer

GSC SIMULATION TEAM

Madhav Puppala Director of Simulation

Chris Olson Simulation Engineer

2D Simplification

2D SIMPLIFICATION TYPES

SYMMETRY ADVANTAGES

ADVANCED SYMMETRY

Utilize the Roller Slider restraint for more Advanced Symmetry conditions

SYMMETRY VS CYCLIC SYMMETRY

If using solids you can use cyclic symmetry for either one

CYCLIC SYMMETRY

UTILIZING SYMMETRY

Symmetrical Geenting ry

UTILIZING SYMMETRY

How To

• Cut Geometry

- Apply Fixture
- Select Faces
- Divide Loads

SYMMETRY RULE OF DIVIDING LOADS

Divide the loads by Two Times the number of Symmetry Cuts through a Load Bearing face

SYMMETRY EXAMPLE

VIRTUAL WALL

Contact type that
 acts like a NO
 Penetration
 contact with a Plane

		Contact Sets	(?)
~	×	-H	
Mes	sage		^
Thick	nes	s of the shells will be taken into account	
Туре			^
	Vii	tual Wall	\sim
		Face < 1 > @Step-5 Face < 2 > @Step-5	
		٥	
Φ		PLANE2	
Prop	ertie	5	^
G	ap (clearance)	4
	۲	Always ignore clearance	0
		Ignore clearance only if gap is less than:	
놂	0.	00895260618 ~	in \sim
Wall	Тур	e	^
	۲	Rigid	
	0	Flexible	
⇔	0		~

DRAFT QUALITY MESH

1st order (Draft Quality)

GSC

()

DRAFT QUALITY MESH

Adaptive method None h-adaptive p-adaptive	
h-Adaptive options Low High Target accuracy:	Adaptive Meshing

ADAPTIVE MESHING

Or	p-adaptive
II-Aud	Low High
Target	t accuracy: 96 %
	Local (Faster) Global (Slower)
Accur	acy bias:
Maxin	num no. of loops 3
Me	esh coarsening
p-Ada	antive options
Stop	when Total Strain Energy Change is 1 % or less
Upda error	te elements with relative Strain Energy 2 % or more of
Starti	ng p-order 2
Maxin	num p-order 5
Maxin	num no. of loops 4

Angular Displacements

CYLINDRICAL COORDINATE SYSTEM RESULTS

CYLINDRICAL COORDINATE SYSTEM RESULTS

Stress plot (2)	
✓ × →	
Definition Chart Options Settings	
Display ^	
SY: Y Normal Stress 🗸 🗸	
N/mm^2 (MPa)	AXIS
Advanced Options ^	
	of
Show as vector plot	
Show plot only on selected entities	
Display symmetric results	Revolution
Node Values	
O Element Values	
Average results across boundary for parts	
·	
NGINEER 3D! Can also be us	sed with a plane to show results
INING + TECHNOLOGY CONFERENCE	lative to that plane

relative to that plane

ANGULAR DISPLACEMENT CALCULATION

GSC

()

F = kx

Leveraging the "linear" in Linear Static

FORCE = STIFFNESS * DISPLACEMENT

100 lbs

URES (mm)

200 lbs

ELEMENTS IN A CIRCLE

Use Elements in a Circle to Globally refine Fillets

Minimum Element Size is the limiting factor

GLOBAL MESH CONTROL

GSC

()

SIMULATING WELDS

GSC

Connectors

Edge Weld & Spot Weld

EDGE WELD CONNECTOR

EDGE WELD CONNECTOR

?

 \sim

 \sim

 \sim

Max

7.9404

5.6147

80,441

44.087

Mean

4.8801

3.4508

231.68

1.7137

SPOT WELD

Connector Force

\sim

Туре	Resultant
Shear Force (N)	11.422
Axial Force (N)	0.4093
Bending moment (N.m)	0.0018555
Torque (N.m)	0.00090889

MODELING THE WELD

Weld is **Bonded** to Components

Components are **No Penetration** to each other

SUBMODELING

SUBMODELING

() GSC

Selection

Sets

TROUBLESHOOTING AN ANALYSIS

TROUBLESHOOTING AN ANALYSIS

The number 1 way to avoid trouble is to do it right the first time!

IT ALL STARTS WITH GEOMETRY....

GSC

ANALYSIS PREPARATION

MINIMIZE COMPONENTS

Minimizing the amount of Components in your Analysis makes Troubleshooting Easier

COMBINED COMPONENTS VS BONDED CONTACT

EXAMPLE...

CONTACTING FACES

creating Contacting Faces that are Flush with each other will minimize Meshing Problems and make your analysis more Accurate and Efficient

GSC

COMPATIBLE VS INCOMPATIBLE MESH

COMPATIBLE VS INCOMPATIBLE MESH

TROUBLESHOOTING AN ANALYSIS

MESH SUMMARY BEST PRACTICES

Study name	stress analysis refined (-Without_crank-)
Mesh type	Solid Mesh
Mesher Used	Curvature-based mesh
Jacobian points	4 points
Max Element Size	5.90759 mm
Min Element Size	1.18152 mm
Mesh quality	High
Total nodes	50576
Total elements	29042
Maximum Aspect Ratio	15.363
Percentage of elements with Aspect Ratio < 3	96.4
Percentage of elements with Aspect Ratio > 10	0.00344
% of distorted elements (Jacobian)	0
Remesh failed parts with incompatible mesh	Off
Time to complete mesh(hh:mm:ss)	00:00:02
Computer name	CHRISO-5520

More than 95% Less than 1-2%

GSC

ASPECT RATIO PLOT

So It Fails...Now What??

Shortest Edge Length

HOW DO I FIND THE SHORTEST EDGE LENGTH??

GEOMETRY ANALYSIS

GSC

GEOMETRY ANALYSIS

ADJUST MESH SIZE

BLENDED CURVATURE BASED MESHER

STANDARD MESH

MESH FAILURE DIAGNOSTICS

GSC

STANDARD MESH VS CURVATURE BASED MESH

Mesh Failure Diagnostics

Face-1

Edge-1 Edge-2 Edge-3 Edge-4 Edge-5 Edge-6

Edge-7 Edma 0

Boss-Extrude1

- Faces

Edges

STANDARD MESH

GSC

STANDARD MESH

STANDARD MESH: A WORD OF CAUTION!

ENGINEER 3D!

GEOMETRY CHECK

GSC

 \mathbf{O}

IMPORT DIAGNOSTICS

Imported Geometry

Faulty Faces

Gaps

Message	~
Repair faulty faces and ga 1. Click Attempt to Heal A 2. If faults remain, hover the items for more inform 3. Right-click an item and from the repair menu.	ps: \II. the pointer over ation. I select an action
Analyze Problem	^
Faulty faces [1]	
······	

CHECK ENTITY

Evaluates the Integrity of the **geometry** at a **deeper** level then **import diagnostics**

MESH TROUBLESHOOTING

INTERFERENCE DETECTION

- Treat Subassemblies as components
- Include multibody part interferences

hterfere	nce Detection	?
✓ ×		
Selected Comp	onents	^
Cardan joint.S	LDASM	
	0	
	Calculate	
Excluded C	omponents	~
Results		~
> 👫 Inter	ference1 - 40.303mm^3	
> 👫 Inter	erence2 - 40.303mm^3	
> 👫 Inter	ierence3 - 40.303mm^3	
> 🎭 Inter	erence4 - 40.303mm^3	
	Ignore	
Component	view	
Options		~
Treat coincid	ence as interference	
Show ignore	ed interferences	
Treat subass	emblies as components	
Include mult	ibody part interferences	_
Make interfe	ring parts transparent	
Create faste	ners folder	
Create match	ning cosmetic threads fold	ler
	en bodies/components	
REMESH FAILED PARTS WITH INCOMPATIBLE MESH

ISOLATE PROBLEM

SPLIT COMMAND

GSC

()

CREATE PARASOLID

Import

AND IF THAT FAILS...CALL US!

TROUBLESHOOTING AN ANALYSIS

REVIEW THE SETUP

BOUNDARY CONDITIONS

Boundary conditions must restrain all rigid body motion of the geometry

Contact Type	Color Rendering	
Bonded	Red	
No Penetration	Purple	Contact
Allow penetration (Free contact)	Green	
Shrink Fit	Orange	Visualization
Virtual Wall	Yellow	
Thermal Contact Resistance	Purple	PIOL
Insulated	Green	

TROUBLESHOOTING WITH INERTIAL RELIEF

Options Adaptive	Flow/Thermal Effects Remark	
Gap/Contact	Friction Coefficient 0.05	
	ance for surface contact	
Improve acc	uracy for no penetration contacting surfaces (slower)	
	anding options	
	inding options	
	rate (slower)	
Large displa	rement	
Compute fre	a bady forcer	
	e body forces	
Solver		
Automatic	solver selection	
	arse solver V	
Use inplan	ring to stabilize model	
Use inertia	I relief	
Results folder	C:\SolidWorks Training Files\SOLIDWORk	
	OK Cancel Apply Help	

WHERE ARE MY RESULTS BEING SAVED?

START WITH GRAVITY

start with gravity and incrementally add loads back into the analysis

STABILIZING RESTRAINT

Single point is restrained for the purpose of adding stability to the model

CORRUPTED STUDY

DUPLICATE STUDY

7 Copy Study **Right Click Study Name** × Message This feature allows you to copy the selected study to new study of the same type or to a Copy Study different type. All Simulation features from the source study will be copied to the new study, provided the features are supported Rename in the new study. Copy Study Source Study Delete 🔇 Static 1 Study name: Create New Motion Study Static 2 Configuration to use: Create New Simulation Study FEA \sim Create New Design Study Target Study \sim **C** REPORT OF A STATE OF A Static Nonlinear ۳v Linear Dynamic ENGINEER

COPY TO STUDY

AND IF THAT FAILS...CALL US!

TROUBLESHOOTING AN ANALYSIS

PER ITEM VS TOTAL LOAD

CHECKING REACTION FORCES

MODEL STIFFNESS

Displacement should be Independent of Mesh Size Mesh Size Displacement **ENGINEER** GSC

MATERIAL PROPERTIES CORRECT

Material		×				
V I SOLIDWORKS Materials	Properties Tables & Curves Appearance CrossHatch Custom Appli	cation Dat 💶 🕨				
✓ I Steel	Material properties					
📒 1023 Carbon Steel Sheet (SS)	Materials in the default library can not be edited. You must first copy the material to a custom library to edit it.					
201 Annealed Stainless Steel (SS)						
See A286 Iron Base Superalloy	Model Type: Linear Elastic Isotropic V					
🚰 AISI 1010 Steel, hot rolled bar	Units: SI - N/m^2 (Pa) 🗸					
🚰 AISI 1015 Steel, Cold Drawn (SS)	Category: Steel					
8 AISI 1020	Name:					
AISI 1020 Steel, Cold Rolled	AISI 304					
AISI 1035 Steel (SS)	Default failure Max von Mises Stress V					
AISI 1045 Steel, cold drawn	Description:					
8 AISI 304	Source:					
AISI 316 Annealed Stainless Steel Ba						
AISI 316 Stainless Steel Sheet (SS)	Sustainability: Defined					
AISI 321 Annealed Stainless Steel (St	Property Volue Unite	•				
AISI 347 Annealed Stainless Steel (St	Elastic Modulus 1.9e+011 N/m^2					
AISI 4130 Steel, annealed at 865C	Poisson's Ratio 0.29 N/A					
AISI 4130 Steel, normalized at 870C	Shear Modulus 7.5e+010 N/m^2					
🚝 AISI 4340 Steel, annealed	Mass Density 8000 kg/m^3					
AISI 4340 Steel, normalized	Tensile Strength 517017000 N/m^2					
AISI Type 316L stainless steel	Compressive Strength N/m^2					
AISI Type A2 Tool Steel	Yield Strength 206807000 N/m^2					
Alloy Steel	Thermal Expansion Coefficient 1.8e-005 /K	~				
< · · ·		>				
Click here to access more materials using the SOLIDWORKS Materials Web Portal. Open Apply Close Save Config Help						

GSC

DOUBLE CHECK UNITS!

MESH QUALITY

Mesh Quality

CONVERGENCE

Stress should be Independent of Mesh Size

CONTOUR PLOT

CONTOUR QUALITY

()) GSC

NODAL VS ELEMENTAL VALUES

GSC

 \mathbf{O}

NODAL VS ELEMENTAL VALUES

NODAL VS ELEMENTAL VALUES (COURSE MESH)

NODAL VS ELEMENTAL VALUES (FINE MESH)

ENERGY NORM ERROR

ENERGY NORM ERROR

AND IF THAT FAILS...CALL US!

SIMULATION TIPS, TRICKS, AND TROUBLESHOOTING

YOUR FEEDBACK IS NEEDED!

	5	Session Name: Presenter Name:					
s	ession Evaluation Form	for each	question, ple	ase rate how	you agree	e with ear	ch
1	 Please take a few minutes to fill out this evaluation to the externent. Graphics Systems Corporation values your feedba 		Strongly	No.	utral A	gree A	langh Lgree
	statement		Oisagree U	0	0	•	•
	I found the content of the presentation informative.		0	0	0	0	0
	The presentation dealt with real-world issues I face today		0	0	0	•	0
	The presentation was delivered clearly & was easy to un	derstand	0	•	0	•	0
	The presenter was knowledgeable about the subject pro	esented.	0	0	0	0	•
	The presenter effectively addressed the questions aske	xd.	0	0	0	0	0
	The presenter captivated the audience.	_	0	0	0	۰	•
	The comm and audio/video met my expectations.		-	0	0	0	0
	I would recommend this session to a friend or collea	gue.	0	0	0	0	0
	Overall, I was pleased I attended this session.			_			
	to use to receive more information about th	is topic.					
1	2. I would like to the O No, Thank You Yes						
1	3. Please share any additional comments or sugget	stions:					
1							
1	intermation is optiona	d:					
1	4. Providing the following information and Last Name:						
1	First Name:						
- 1	Company:						

ENGINEER3D! TRAINING + TECHNOLOGY CONFERENCE Session evaluation forms are located in the <u>back of your conference</u> program.

Session Name: Simulation Tips, Tricks, and Troubleshooting Presenter Name: Chris Olson

Please remove your completed form and <u>place in box by the door.</u>

Thank you!

